

La sélection naturelle en évolution moléculaire

histoire, statut et perspectives

Guillaume Achaz

Atelier de Bioinformatique, UMR 7205, Museum National d'Histoire Naturelle, Paris SMILE, UMR 7241, Collège de France, Paris

Molecular Evolution

Molecular component of evolution (mostly genetics) to assess the evolution **of** and **from** molecules

Micro-evolution (populations)

Polymorphisms (transient states)

Population genetics Phylogeography Macro-evolution (species)

Divergence (fixed differences)

Speciation process Phylogeny

Molecular Evolution (sensu lato)

Historical Glimpse

Origin of Population Genetics (20's-30's) The Modern Synthesis (40's-60's) Neutral Theory (70's-80's) Contemporary View

Tools

Mathematical models deterministic (*i.e.* selection) stochastic (*i.e.* genetic drift)

Data

Intra-specific homologous loci polymorphism (>1 allele)

Population Genetics

A quick **historical perspective**

Sir Ronald A. Fisher (1890-1962)

CONTENTS

	List of Illustrations						xiii
I.	The Nature of Inher The consequences of the Difficulties felt by Darwin the variance. Theories of inheritance particulate ? I	itance blending A. Particulat of evolution Nature and fr	theory, te inheri worked	as drawn tance. Co by muta of observ	by Darv nservation ations. Is ed mutation	vin. a of all ons.	1
ш.)	The Fundamental T. The life table and the ta meter of population inc element in variance. Na Deterioration of the envir	heorem of ble of repro- rease. Rep tural Selectionment. Ch	Natura luction. roductiv on. The anges in	al Select The Mal e value. nature o populatio	tion . thusian pa The gen of adaptation. Summa	etic ion.	22
ш.	The Evolution of Do The dominance of wild get factors. Modifications of the theory. The process of of the evolution of domin	ominance nes. Modific the heteroz of modification ance. Summ	ygote. on. Infe	the effects Special ag rences fro	of Mendel pplication om the the	lian a of ory	48
IV)	Variation as determ The measurement of gen individual gene; relation beneficial mutations. Sin gene ratios in factors co of random survival. The variance.	ined by M e frequency. to Poisson gle origins n entributing to number of	utation The cl series. I ot impre- to the v the fact	n and S sance of a Low mut obable. D variance. ors contri	election survival of ation rate Distribution Slight effi ibuting to	an a of ects the	70
v,	Variation &c. (conti The observed connexion gene ratios. Equilibrium characters. Meristic ch selection. Summary.	inued) between var a involving maracters.	iability i two fac Biometri	and abund stors. Sir cal effec	iance. Sta nple metr ts of rec	ble ical ical	97
VI.	Sexual Reproduction The contrast between set of species. Fission of sp Sex limitation of modific Summary.	n and Sex cual and ase ecies. Sexus ations. Nati	ual Sel xual rep il prefer iral Sole	ection roduction ence. Ser ction and	. The nat cual select the sex rs	ion.	121
VII.	Mimicry The relation of mimicry Selection. Theories of Ba tion of Müllerian theory The evolution of distaste of the area ratio. Summ	theory to tes and Müll Observati fulness. The	the par er. Sup onal ba theory	ent theor posed stat sis of mir of saltation	ry of Nat tistical lim micry the ons. Stabi	ural ita- ory. lity	146

1930

Sewall Wright (1889-1988)

EVOLUTION IN MENDELIAN POPULATIONS

SEWALL WRIGHT University of Chicago, Chicago, Illinois

Received January 20, 1930

TABLE OF CONTENTS

	PAGE
Theories of evolution	97
Variation of gene frequency	100
Simple Mendelian equilibrium	100
Mutation pressure.	100
Migration pressure	100
Selection pressure	101
Equilibrium under selection.	102
Multiple allelomorphs	104
Random variation of gene frequency	106
Rate of decrease in heterozygosis.	107
The population number.	110
The distribution of gene frequencies and its immediate consequences	111
No mutation, migration or selection.	111
Nonrecurrent mutation	116
Reversible recurrent mutation	121
Migration.	126
Irreversible recurrent mutation	128
Selection	129
General formula.	133
The distribution curves	134
Dominance ratio	137
The mean and variability of characters	139
The evolution of Mendelian systems	142
Classification of the factors of evolution	142
Lability as the condition for evolution	147
Control of evolution	151
Agreement with data of evolution	153
"Creative" and "emergent" evolution	154
SUMMARY	154
LITERATURE CITED	1.58
	100

THEORIES OF EVOLUTION

One of the major incentives in the pioneer studies of heredity and variation which led to modern genetics was the hope of obtaining a deeper insight into the evolutionary process. Following the rediscovery of the Mendelian mechanism, there came a feeling that the solution of problems of evolution and of the control of the process, in animal and plant breeding

356

PROCEEDINGS OF THE SIXTH

THE ROLES OF MUTATION, INBREEDING, CROSSBREEDING AND SELECTION IN EVOLUTION

Sewall Wright, University of Chicago, Chicago, Illinois

1932

John B.S. Haldane (1892-1964)

The Causes of Evolution

J.B.S. Haldane

With a new Afterword by Egbert G. Leigh, Jr.

Contents

Preface, by J. B. S. Haldane Preface to the 1990 Edition, by Egbert G. Leigh, Jr. Introduction by Egbert G. Leigh, Jr.	vii viii ix
2	
CHAPTER ONE Introduction	1
CHAPTER Two Variation Within a Species	19
CHAPTER THREE The Genetical Analysis of Interspecific Differences	35
CHAPTER FOUR Natural Selection	46
CHAPTER FIVE What is Fitness?	61
CHAPTER SIX Conclusion	78
Appendix Biblionerschied Beforenze	92
Bibliographical References Afterword by Fahert G. Leigh Ir	126
Index to the Text	213

Adaptation

Macromolecules are constantly adapting to their environment

Polymorphisms result from a *selection-mutation* equilibrium

Various pattern of selection are described (positive, purifying, balancing, sexual, ...)

The modern synthesis (40's-60's)

Promoted by

A paradigm shift

The "reference" model

1859 - ~1970: Evolution is driven by adaptation

1970 – today: Molecular evolution is driven by genetic drift

Kimura (1968) *Evolutionary Rate at the Molecular level* Jukes and Kings (1969) *Non Darwinian Evolution*

An influential figure

M Kimura

1950-1970 : major mathematical outbreaks 1970-1994 : causes of molecular evolution

The Neutral Theory of Molecular Evolution (1983)

Motoo Kimura (1924-1994)

The neutral theory of molecular evolution

Motoo Kimura

	Preface	1X
	Introduction	xi
1	From Lamarck to population genetics	1
2	Overdevelopment of the synthetic theory and the proposal of the	
	neutral theory	15
2.1	Formation of the synthetic theory as the orthodox view	15
2.2	Proposal of the neutral mutation-random drift hypothesis	25
3	The neutral mutation-random drift hypothesis as an evolutionary	
	paradigm	34
3.1	Chance acting on selectively equivalent alleles	34
3.2	Random genetic drift due to finite population size	36
3.3	Effective population size	40
3.4	Neutral and nearly neutral mutations	43
3.5	Population dynamics of mutant substitution	46
3.6	On some misunderstandings and criticisms	50
4	Molecular evolutionary rates contrasted with phenotypic evolu-	
	tionary rates	55
4.1	Some features of phenotypic evolution	55
4.2	Rate of evolution at the molecular level	65
5	Some features of molecular evolution	98
6	Definition, types and action of natural selection	117
6.1	Meaning of natural selection	117
6.2	Phenotypic selection on quantitative characters	119
6.3	Genotypic selection	121
6.4	Other terminologies and concepts for natural selection	125
6.5	Genetic load	127
6.6	Fisher's model of adaptive process	135
6.7	Relation between phenotypic selection and genotypic selection	137

1983

The Neutral Theory

All mutations are neutral

Polymorphisms result from a *mutation-drift* equilibrium

More polymorphisms are expected under neutrality, for a given mutation rate

Deeper into the so-called **Standard Neutral Model**

The mutation-drift paradigm (H0)

At equilibrium, $\Delta H=0 \Rightarrow H^* = 2N\mu$

Standard Neutral Models

Population size N

time

No selection Constant Population Size Strict Panmixia

Consequences

X: the number of descendants is distributed with

E[X] = 1, for all N individuals

The Wright-Fisher model

1 generation = all individuals die and are replaced by a random sample

The fixation process

Forward time

From a random time

From the MRCA

$$\mathbf{E}[t_{fix}] = 2N$$

 $\mathbf{E}[t_{fix}] = \mathbf{N}$

The coalescent process

Backward time

From the fixation time

$$\mathbf{E}[t_{MRCA}] = \mathbf{N}$$

From a random time

$$\mathbf{E}[t_{MRCA}] = 2N$$

The current paradigm

HO

=

standard neutral model

Ξ

Kingman coalescent

Kingman coalescent trees

Time is counted in N generations ; N -> ∞

Kingman trees

With recombination...

No single tree can be inferred but...

Genome-wide = expected diversity

Mutations are Poisson distributed on the branch lengths ; Tree space is averaged

Mutations

• • •

S : total # of mutations:

 $E[S] = 2 N \mu x (\Sigma 1/i)$ (Waterson, 1975)

Other measures of diversity:

$E[\pi] = 2 N \mu$	(Tajima, 1983)
$E[\xi_1] = 2 \ N \mu$	(Fu and Li, 1993)
E[ξ_i] = 2 N μ / i	(Fu, 1995)

Mostly neutral with exceptions

Genome-wide hunts for selective sweep (Lactase, Immune system, etc.)

The case of **The Ne (des)illusion**

Let's Pause and Ponder

Can we evaluate the Neutral model?

Within species nucleotide diversity

Effective population size

Mutation frequencies

Distribution of mutation frequencies

At the locus scale

Large variance Hard to reject H0

At the genome scale

Recombination = average many loci current approach

From model to real populations

Population size N

Model Population

No selection Constant Population Size Strict Panmixia

E[t₂] = N E[π] = 2 N μ "Effective" population size N_e

Realistic Population

Selection Variable Population Size Demography

(π : pairwise differences ; μ mutation rate)

⁽in a Wright-Fisher model)

Assessing species diversity (Lewontin & Hubby, 1966)

Effective population size x Nucleotide mutation rate (N_e u)

Lynch and Connery, 2003

Lefler et al., 2012

Why diversity does not scale linearly with N? (Lewontin's variation paradox, 1974)

Examples of Ne vs N

Species	N (census size)	N _e
H. sapiens	7.10 ⁹	10 ⁴
G. gorilla	10 ⁵	10 ³
D. melanogaster	?	10 ⁶
C. elegans	?	10 ⁵
A. thaliana	?	10 ⁵
P. kergelensis	?	10
F. Psychrophilum	10 ⁹ /ml of cult.	10 ⁶
E. coli	10 ⁹ /ml of cult.	10 ⁸
HIV (within patient)	10 ¹⁰	10 ³

Why is Ne unrelated to current census size? Demography?

The case of the **Yoruba demography**

Expected Site Frequency Spectrum (HO)

Under H0, full SFS is proportional to 1/i

Visual test for H0

(Nawa & Tajima 2008, Achaz 2009, Lapierre et al. 2017)

Departure from HO: an excess of *low* frequency alleles

SFS with demography

SFS with demography (e.g. exp growth or any scenario)

Demography with SFS

(e.g. Nielsen 2000, Gutenkust et al. 2009, Liu and Fu 2015, Lapierre et al. 2017)

Adding demography greatly improves the fit

Human demography and migrations

One of the favorite "game" of human population geneticists...

Do demography explains diversity?

Nice fit to data

Demographical inferences work approximately well provided the « correct $N_{\rm e}$ » is used.

Several scenarios are indistinguishable (Lapierre et al., 2017)

Structure is completely neglected (Mazet et al. 2016)

What is N_e, when accounting for demography?

N_e(0), the "*current effective population size*" would be... **33,000** ???

The case of the **Global species diversities**

(ongoing work with F Freund, S Matuszewski, J Jensen, A Lambert)

Then came the U spectrum

Departure from H0: an excess of *low* & *high* frequency alleles

... in all species

No simple demography can account for the U-shape!

Multiple Merger => U-shaped spectra

few individuals have many offsprings

(Gillespie 2000a, 2000b, ...)

(reviewed in Neher 2013)

The genetic draft (Recurrent selective sweeps in very large populations)

(Maynard Smith and Haigh 1974, ..., Gillespie 2000a, 2000b, ...)

Selection would be the cause of (low) genetic diversity

From data to models, and vice-versa

Observations

Sequences do change Homologous loci show diversity

The (unknown) Cause of Molecular Evolution

Neutral theory (standard neutral models, H₀) Adaptation theory (multiple mergers coalescent) Demography Population structure

Ultimately, assess the **Biological Relevance** of models

Kingman (H₀) Multiple mergers*,*

...

Kingman (H₀) -- small stable populations--

Multiple mergers, -- large populations—

The relative role of selection and drift needs careful rethink