

des Sciences et des Techniques (CIEEIST)

Chimie des eaux naturelles et impact des activités humaines

Philippe BEHRA

www.chimieagroindustrielle.fr/

Professeur des universités

Université Fédérale Toulouse Midi-Pyrénées

Orsay, 2 février 2017

Institut National Polytechnique de Toulouse École Nationale Supérieure des Ingénieurs en Arts Chimiques Et Technologiques Tel. #33-(0)534 323 508 – courriel : Philippe.Behra@ensiacet.fr

Laboratoire de Chimie Agro-Industrielle UMR 1010 INRA/INPT-ENSIACET

Director: Dr. Gérard VILAREM - Pr. Carlos VACA GARCIA

Chemodynamics and treatment of micropollutants Prof. Philippe BEHRA Pierre-Yves PONTALIER, MCF Caroline SABLAYROLLES , MCF Claire VIALLE , MCF

Research and technology transfer

Laboratoire de Chimie Agro-Industrielle

TOTAL VALORISATION OF VEGETAL BIOMASS

AGRORAFFINERY

Non food domain

3 research teams

Knowledges and scientific skills

Toulouse Tarbes

+ 1 Team for Transfer

10 personnes

Plan

Cycle de l'eau Qualité de l'eau

Composition des eaux naturelles

Impact des activités humaines

Cycle de l'eau

(Philippe Maisongrande, Legos)

1,4.10⁹ km³d'eau

(Philippe Maisongrande, Legos)

Répartition de l'eau sur terre

Bilans des flux hydriques annuels sur l'ensemble de la planète exprimés en km³ d'eau

(d'après Ghislain de Marsily, 1995 et 2009)

Demande en Eau

km ³ /a	1900	1950	1990	2000	%
					(2000)
Agriculture	525	1 130	2 680	3 250	63 %
Industrie	37	178	973	1 290	25 %
Domestique	16	58	470	660	12 %

 Crues :
 27 500 km³/a

 Eaux souterraines :
 10 500 km³/a

 Glaces :
 2 500 km³/a

Récupérable : ~13 500 km³/a

Total : 5 200 km³/a

(de Marsily, 2009)

Eau et production agricole

Produits	végétaux	Produits transformés	
		et animaux	
Blé, céréales C3	1 000	Huiles	5 000
Maïs, céréales C4	700	Volailles	4 100
Pommes de terre	100	Bœuf	13 000
Maraîchage	200-400	Œufs	2 700
Agrumes	400	Lait	800

Volumes d'eau requis en m³/t pour produire les bases alimentaires Partie consommée brute (non en matière sèche) des différents produits

(Behra, 2013)

Chimie des eaux naturelles et impact des activités humaines

A SO CRITICAL ZONE?

biogeochemistry, hydrogeology

The Critical Zone is defined by the US NRC in 2001 : between the sky and the rocks : a complex bio-physico-chemical reactor with variable characteristic timescales. We lack an integrated understanding of this zone critical for....

(from Arnaud and Gaillardet, 2016)

A SO CRITICAL ZONE? FOR THE PLANET

Qualité de l'eau

Composition des eaux naturelles

QUALITY OF WATER

Three basic properties of water

- => solvent: dissolution and presence of inorganic compounds in water at equilibrium with minerals
- => reactant: chemical reaction with other chemical compounds (*e.g.* photosynthesis...)
- => vector: transport of chemical compounds present in water
 - [soils surface and ground waters living organisms...]

QUALITY OF WATER

Weathering processes: acid-base reactions

Calcareous

$$CaCO_{3(s)} + CO_{2(g)} + H_2O \leftrightarrows Ca^{2+} + 2 HCO_3^{-}$$

Gypsum

$$CaSO_{4(s)} + 2 H_2O \leftrightarrows Ca^{2+} + SO_4^{2-}$$

Silica and feldspar

 $SiO_{2(s)} + 2 H_2O \leftrightarrows H_4SiO_4$ NaAlSi_3O_{8(s)} + H_2CO_3^{*} + 4,5H_2O \leftrightarrows Na^+ + HCO_3^- + H_4SiO_4 + 0,5Al_2Si_2O_5(OH)_{4(s)}

QUALITY OF WATER

Production of biomass: redox reactions

Photosynthesis-respiration

 $6CO_{2(g)} + 6H_2O + solar energy \leftrightarrows {CH_2O}_6 + 6O_{2(g)}$

Chemical composition of natural waters

Parameters	"Average" river water ^{a)}	Loire ^{b)}	Seine ^{c)}	Bourget lake ^{d)}	Sea water ^{e)}
рН	6.5 – 8.5	7.0 - 8.3	7.8 - 8.1	7.3	8.1
Ca ²⁺ mM	0.4	0.85	2.4	1.4	10
Mg ²⁺ mM	0.16	0.19	0.21	0.25	55
Na⁺ mM	0.3	0.5	0.4	0.3	500
HCO ₃ [−] mM	1.0	1.6	3.9	(2.8)	2.1
Cl [–] mM	0.2	0.3	0.5	0.2	565
SO₄ ^{2−} mM	0.1	0.15	0.3	0.26	29
H ₄ SiO ₄ mM	0.2		0.06	0.03	0.04 - 0.16

a) from Stumm and Morgan (1996), composition corresponding to the average of river discharge to oceans;
b) from Grosbois *et al.* (2000);
c) from Roy *et al.* (1999);
d) from Irstea, Lyon, and Jacquet *et al.* (2009);
e) from Millero (2006)

(Sigg, Behra, Stumm, 2014)

Quality of water: Natural inputs *vs.* human activities

(Sigg et al., 2014)

Comparison between chemical composition of the Calancasca river (south Switzerland, crystalline substratum) and the Glatt river (Swiss plateau, calcareous)

Chemodynamics of compounds

Methods for studying chemical behavior in heterogeneous complex systems: flux study, scaling (in space and time) and inter-disciplinary approach

Qualité de l'eau

Impact des activités humaines

Hg problematic in the Amazon basin

 Indigenous communities in Bolivia: A high [total Hg] in hair

> from 12 to 35 µg/g (90 % MeHg⁺)

WHO limit in hair: 10 μg/g MeHg⁺

(Laffont et al., 2009, ES&T, 43, 8985-8990)

© L. Maurice/IRD

Aims in Bolivia

Tracing the sources of Hg in a natural environment

Origin of the sources:

anthropogenic

natural

Using significant differences in isotopic fractionation of:

Hg used by gold-miners

Hg in cultivated or slash and burned soils (eroded in rainy season)

Hg from rock weathering

> Atmospheric Hg

In : bed-rock, soils, sediments, fishes and human hair

See works by Laure Laffont, Jeroen Sonke, David Amouroux, Laurence Maurice & PhB

Sampling sites (12 locations, 100 km)

Hg in surface waters of the Thur and Ill rivers (Alsace, France)

Understanding the mechanisms controlling the biogeochemical cycle of trace contaminant, *e.g.* mercury

bedrock

What about colloid transport or their potential scavenging role in contaminant transport?

Role of clay mobility after their peptisation in Hg(II) transport through natural quartz sand

- a) Injection of 0.5 μ M Hg(II) with NaCl (I = 10 mM) to steady-state condition (C/C₀ \approx 1) Then injection of NaCl (I = 10 mM) alone When [Hg] \approx 0, injection of pure water leading to clay peptisation
- b) Each sample divided in 3: total [Hg], [Hg] after centrifugation (expressed as C/C₀) and clay mass. NaCl gradient given

(after Behra, Geoderma, 1986)

What about colloid transport or their potential scavenging role in contaminant transport?

letters to nature

Re and Al₂O₃ were heated with laser beams from both sides. Acting like planar heat sources, the two 'hot plates' eliminate the axial temperature gradient in the sample between the plates. Temperature variation is less than 3% within roughly 30 µm diameter at 2,500 K. Before the melting experiments, the sample was scanned with a laser beam and heated to about 2,000 K to reduce the pressure gradient and to produce a high-pressure solid-phase assemblage. For stable and smooth temperature control, temperatures were increased by adjusting an aperture placed near the beam exit, stepwise, instead of by adjusting power. Each step corresponds to a 50-100K increase. A 30-µm spot was homogeneously heated by opening the aperture (increasing the step). At the onset of melting, temperature remains constant or drops slightly with the step increment, and then drastically increases (>400K) within one step. To ensure the reliability of the melting criteria used in this study, we conducted melting experiments at pressures (16-27 GPa) overlapped by the multi-anvil apparatus and the diamond-anvil cell, using the same starting material, and obtained consistent melting temperatures (Fig. 3). We also used the same melting criteria to determine the melting temperature of MgSiO₃-perovskite previously studied by other investigators, and our results agree with these recent determinations^{13,14} (Fig. 3). The temperature runaway phenomena near the onset of melting observed in simple and complex samples were probably a result of the latent heat of melting, followed by melt migrating away from the heated spot because of the large thermal pressure and, finally, the Re foils would have been heated without sample in between. No chemical reaction between Re and sample was observed in the multi-anvil experiments on a scale of 1 µ.m. The

Migration of plutonium in ground water at the Nevada Test Site

A. B. Kersting*, D. W. Efurd†, D. L. Finnegan†, D. J. Rokop†, D. K. Smith* & J. L. Thompson†

* Isotope Sciences Division, PO Box 808, L-231, Lawrence Livermore National Laboratory, Livermore, California 94550, USA † Chemical Science and Technology Division, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Mobile colloids—suspended particles in the submicrometre size range—are known to occur naturally in ground water^{1,2} and have the potential to enhance transport of non-soluble contaminants through sorption³. The possible implications of this transport mechanism are of particular concern in the context of radionuclide transport. Significant quantities of the element plutonium have been introduced into the environment as a result of nuclear weapons testing and production, and nuclear power-plant accidents. Moreover, many countries anticipate storing nuclear waste underground. It has been argued that plutonium intro-

Nature 397, 56-59 (7 January 1999)

What about colloid transport or their potential scavenging role in contaminant transport?

2.0 KV

1.00 μm

2.0 KV

1.00 μm

- a, The tabular, lath-shaped morphology of the zeolite, mordenite;
- b, the platy appearance of the clay, illite.

The two distinct morphologies were observed in all three size fractions (> 1 μ m, 1 000–50 nm, and 50–approx. 7 nm)

(from Kersting et al., Nature 397, 1999)

Chemodynamics of compounds

Methods for studying chemical behavior in heterogeneous complex systems: flux study, scaling (in space and time) and inter-disciplinary approach

New INNOVATING CHEMICAL SENSORS/MIACTIS-MAISOE-CRITEX-IEDD

EQUIPEX PROJECT: CRITEX

PARC NATIONAL D'ÉQUIPEMENTS INNOVANTS POUR L'ÉTUDE SPATIALE ET TEMPORELLE DE LA ZONE CRITIQUE DES BASSINS VERSANTS

COORDINATOR: JÉRÔME GAILLARDET (INSTITUT DE PHYSIQUE DU GLOBE DE PARIS)

TASK 4.3: INNOVATING CHEMICAL SENSORS

TASK LEADERS: PHILIPPE BEHRA & FRANÇOIS PRÉVOT (IPGP, UNIV. PARIS DIDEROT)

OBJECTIVES: DEVELOP OF NEW SYSTEMS FOR *IN SITU* PHYSICO-CHIMICAL MONITORING

EQUIPMENT FOR A PLATFORM:

RAMAN MICROSPECTROSCOPE, QUARTZ MICROBALANCE, SURFACE PLASMA RESONANCE, POTENTIOSTAT

SENSOR PROJECTS: Hg SPECIATION, $CH_{4(aq)}$, NUTRIENTS (Si, PO_4^{3-} , NO_3^{-}), BORON, PESTICIDES

Récepteur composé de nanoparticules d'or (AuNP) électrodéposées (image a – diamètre moyen des AuNP: 15 nm) ou synthétisées par voie organométallique (image b – diamètre moyen des AuNP: 7 nm) sur du carbone vitreux pour l'analyse électrochimique du mercure dissous dans l'eau à des concentrations de l'ordre du ng/L. D'après T. HEZARD *et al.*, 2012, K. FAJERWERG *et al.*, 2013. © Photo a) ELSEVIER. © Photo b) LCC (P.-J. DEBOUTTIÈRE).

(Fajerwerg, K., Behra, P., Gaillardet, J., 2015. Capteurs de la qualité des eaux, in Eau à Découvert, codirigé par A. Euzen, C. Jeandel et R. Mosseri, CNRS Éditions, Paris, 2015, à paraître)

Analyses of polar pesticides and glyphosate in Mekong Delta

*Tran-Thi Nhu-Trang*¹, Do Minh-Huy¹, Nguyen T. Thu-Thao¹, Chau Quoc-Hung¹, Tran L. Thanh-Thien¹, Nguyen Thien-Thao², Didier Orange³, Philippe Behra⁴

 ¹ Department of Analytical Chemistry, University of Science Ho Chi Minh City (Vietnam)
 ² Tra Vinh University, Tra Vinh Province (Vietnam)
 3 Ecologie Fonctionnelle & Biogéochimie des Sols & des Agro-Ecosystèmes, IRD, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
 ⁴ Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INPT, Toulouse (France)

ACS – San Francisco, April, 2017

Emerging organic micropollutants

ACTIVE (GRAB) AND PASSIVE SAMPLING

• Grab sampling:

Lack of reliability because of low sampling frequency

- Automated sampling with
 high frequency:
 Better reliability but
 - time consuming
 - expensive

Incompatible with routine analysis

Passive sampling:

- Acquisition of a time weighted average concentrations since devices continuously exposed
- Lower quantification limits since analytes being concentrated in situ

Sampling in June and July 2015, and March and April 2016 at 4 positions of Tra Vinh rivers:

- > P1 at outside (about 0.5 km) and P2 at inside (about 1 km) from Lang The dam;
- P3 at inside (about 1 km) from Tam Phuong dam and P4 at a small canal near the rice fields (1.5 km from Tam Phuong dam).

CONCLUSION

- Preliminary results: as in surface water, POCIS being a useful tool, especially for the screening of substances at low concentration levels that are not detected by laboratory analysis of spot samples
- Presence of atrazine and 2,4-D in Tra Vinh rivers as to be considered and necessary to pay more attention since surface waters here being not only used for agricultural cultivation but also for aquaculture and particularly for local people activities

Ongoing study

- Sorption of these organic compounds on sediments and colloids
- Transport mechanisms in surface water and to/through groundwater
- Development of new chemical sensors to selectively determine the pollutant targets (USTH PhD thesis of Huy Do)
- Impact of ecosystem

Bassin versant du Lot amont (S.-O. France)

1

Audry et al., 2004

Study of the temporal variation of the concentrations of the dynamic metal fractions in the Riou-Mort stream

The Riou-Mort watershed:

- affected by leaching and mechanical erosion of metallurgical wastes from former mining and ore smelting activities.
- known as the major source of the historical polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system

EU project ECODIS: Dynamic sensing of chemical pollution disasters and predictive modelling of their spread and ecological impact (2005-2008)

M.-L. Tercier-Waeber*, Teddy Hezard, Matthieu Masson, Jörg Shäfer, Env. Sci. Tech. 2009

Experimental conditions:

Measurements at the Riou-Mort Joanis site were performed in Spring 2007 and 2008 which were characterized by large difference in hydrological conditions

2008

Cd dynamic in Riu-Mort river (Aveyron) :

- Noon-midnight: Control of Cd dynamic by sorption on benthic periphyton due to increasing pH and of photosynthesis/respiration
- Noon-midnight: control of Cd dynamic by dissolution/precipitation processes of (hydr)oxides of Mn mainly

Surface Complexation $M^{2+} + \equiv S - OH \iff \equiv S - OM^+ + H^+$

Photosynthesis-Respiration $6CO_{2(g)} + 6H_2O + solar energy \leftrightarrows {CH_2O}_6 + 6O_{2(g)}$

Different processes may control the diurnal cycles of the dynamic Me species

(in Behra, 2013; from Tercier-Waeber et al., 2013)

Example of Riou-Mort river

Importance of *in-situ* monitoring systems at the field site:

- For following the different parameters by *in situ* dynamic sensors with continuous measurement and at high frequency (meaning?)
- * For a better understanding of biogeochemical cycles of elements, nutrients, contaminants and xenobiotics in natural systems, the impact of human activities on inland waters to sea waters (including ground, soil and surface waters...)

Chemodynamics of compounds

Methods for studying chemical behavior in heterogeneous complex systems: flux study, scaling (in space and time) and inter-disciplinary approach

(from Behra Ph., 2000, book, COST 67, COST, EUR 19248)

Field site after remediation: Example of Salsigne (south of France)

AUDE

DIMANCHE 30 OCTOBRE 2016 Agence de Carcassonne, tél: 04 68 11 90 11 • redaction 11@ladepeche

Pollution : des recommandations

l'essentiel ▼

La situation environnementale des anciens sites miniers dans la vallée de l'Orbiel reste préoccupante. C'est le sens donné à un long communiqué publié cette fin de semaine par le préfet de l'Aude.

aut-il lire ce texte comme un rappel des précautions à ob-

PORTE BIEN SON NOM DESA

n est à la frontière espagnole, côté ariégeois, dans une zone déserte qui compte peut-être un habitant au kilomètre carré. Charlie a parlé il y a un peu plus d'un an d'un projet «minier» délirant, soutenu en son temps par le Montebourg, quand il rêvait de réindustrialiser la France, marinière en sautoir.

En deux mots, des amis de l'homme tentent de rouvrir la mine de Salau, fermée en 1986, où se cacheraient des réserves de

tungstène, mais aussi d'amiante, toutes deux fatalement entortillées. De nombreux anciens mineurs se cognent des maladies respiratoires et des cancers bronchiques (un remarquable documentaire en ligne : mediacoop.fr/rubrique/ documentaires/mine-de-rien).

Où en est-on? Mystère. Fin octobre, le secrétaire d'État à l'Industrie socialo a accordé à la société Variscan un permis d'exploration, à la recherche de tungstène, et donc d'amiante.

"C'est le flou le plus total, raconte à Charlie un opposant local décidé. La politique de Variscan n'est que pure esbroufe. L'un de ses deux dirigeants. Michel Bonnemaison, a même fait miroiter un jour, avant de se reprendre, la création de 1000 emplois.»

Variscan a visiblement la cote auprès de Hollande et de ses petits amis d'Ariège, ce qui ne manque pas d'intriguer. Car sa filiale française, créée par une société australienne, a des

les fins de mois plantureuses. Selon des documents internes à Variscan le directeur de sa filiale française, qui n'a encore rien produit, recevrait la bagatelle de 15000 euros par mois. Et son directeur exécutif, 6500 euros.

Payés depuis l'Australie. On

apparences vaporeuses

Ce qui n'empêche pas

est-ce auon va aire les poches leurs kangourous et chier d'dans

aimerait être sûrs que ces excellents citoyens paient en France des impôts sur le revenu.

Fabrice Nicolino

F. N.

Conclusions

Nécessité de connaître les mécanismes physico-chimiques pour une meilleure compréhension de l'impact des activités humaines et d'intégrer ces mécanismes dans les modèles afin de prévoir le comportement des contaminants à différentes échelles de temps et d'espace

Chemodynamics of compounds

Methods for studying chemical behavior in heterogeneous complex systems: flux study, scaling (in space and time) and inter-disciplinary approach

CONCLUSIONS

Objectif : application aux systèmes réels

Nécessité de considérer les variations spatiales et temporelles des échanges aux interfaces ainsi que les hétérogénéités des systèmes complexes (aucun besoin de purification des phases solides ou du fractionnement de la matière organique naturelle) en prenant en compte :

- la spéciation vraie aussi bien dans la phase aqueuse en utilisant des capteurs dynamiques in-situ qu'aux interfaces
- l'hydrodynamique effective et
- la réactivité effective au niveau de ces interfaces

L'eau est l'élément le plus essentiel de la vie.

Parce que sans eau, tu ne peux pas faire de caféou de thé !

Acknowledgment:

- STAE Foundation for funding MAISOE project and granting Pierre-Jean Debouttière, Laure Laffont, Teddy Hezard
- Vincent Collière (LCC) for SEM-FEG pictures, Yves Coppel (LCC) for NMR analyses
- Laure Laffont, Jeroen Sonke, Laurence Maurice Lars-Eric Heimburger, Feida (GET-Jaboratory) for Font Estramar water samples and AFS analyses, David Amouroux (IPREM, UPPA)
- K. Fajerwerg (LCC), P. Gros, D. Evrard (LGC), B. Dubreuil (LCA)
- J.-J. Ehrhardt (LCPME, Nancy), J. Lützenkirchen, V. Wernert, J. Carrayrou Mosé (IMF, Strasbourg), F. Frimmel (Uni. Karlsruhe)
- Yann Sivry (Uni. Paris Diderot), S. Audry (GET), M. Tercier-Waeber (Uni. Genève)
- Tran-Thi Nhu-Trang, Do Minh-Huy, Nguyen T. Thu-Thao, Chau Quoc-Hung, Tran L. Thanh-Thien (VNUHCMc), Nguyen Thien-Thao, Didier Orange
- Frédéric Ogé (Prodig CNRS, Paris), Jérôme Gaillardet (IPG, Paris)
- Laura Sigg & Werner Stumm (ETH Zürich, EAWAG)

Chimie des eaux nature les et impact des activités humaines

www.chimieagroindustrielle.fr/

ENSIACET

ercipour volve attention

Université Fédérale Toulouse Midi-Pyrénées

Orsay, 2 février 2017

Institut National Polytechnique de Toulouse École Nationale Supérieure des Ingénieurs en Arts Chimiques Et Technologiques Tel. #33-(0)534 323 508 – courriel : Philippe.Behra@ensiacet.fr