

Institut de Chimie des Substances Naturelles, CNRS-UPR 2301 Gif sur Yvette

Plantes, molécules et cancer

Fanny ROUSSI

Responsable équipe "Métabolites de végétaux : isolement, synthèse et bioactivité"

"When you have no idea where to begin in a drug discovery program, Nature is a good starting point"

Lynn H. Caporale, Chem. Eng. News 13 October 2003, 89

Nature : source de biodiversité et « bibliothèque » de molécules originales

Substances naturelles bioactives

\diamond La Nature est une source régulière de nouveaux médicaments

♦ > 50% des médicaments ont une connexion avec la Nature (75% pour les anti-cancéreux)

Newman, D. J. Cragg, G. M. J. Nat Prod. 2012, 75, 311, ibid 2016

Substances naturelles bioactives

- Les molécules isolées des produits naturels qui présentant une activité biologique sont des métabolites secondaires
- Chez les végétaux, ces métabolites secondaires exercent une action déterminante sur l'adaptation des plantes à leur environnement. Ils participent à la tolérance à des stress variés (attaques de pathogènes, prédations d'insectes, sécheresse, lumière UV...).

Herbivorie par les larves de lépidoptères Aggression Composés volatils Maïs

Schnee et al., PNAS 2006, 103, 1129

Ces métabolites secondaires constituent la base des principes actifs que l'on retrouve dans les plantes médicinales

Pourquoi les métabolites II^{aires} sont-ils souvent bioactifs ?

- ♦ Ces métabolites ont des structures chimiques originales et complexes
- Cela résulte d'une optimisation des interactions avec leur cible qui a permis la survie des espèces au cours des millénaires
- Les produits naturels sont « prévalidés » par la Nature et peuvent être considérés comme des structures privilégiées (capables d'interagir avec d'autres cibles biologiques que leur cible primitive)
 Knossow, M. et coll. Nature 2005, 519

J. Rosen et al. J. Med. Chem. 2009, 52, 1953; H. Lachance et al. J. Med. Chem., 2012, 55, 5989

Pourquoi les métabolites II^{aires} sont-ils souvent bioactifs ?

Espace chimique représentant les 10⁶⁰ molécules pouvant avoir une activité biologique

La grande diversité structurale des produits naturels fait qu'ils occupent une partie plus importante et différente de l'espace chimique que les chiomiothèques synthétiques et que ce sont potentiellement de bons candidats pour des cibles biologiques nouvelles et/ou difficiles à cibler

Dobson, CM, Nature, 2004, 432, 824, Revue : J. -L. Reymond, Acc. Chem. Res. 2015, 48, 722

Institut de Chimie des Substances Naturelles (ICSN)

- Centre de recherche du campus du CNRS de Gif-sur-Yvette spécialisé en chimie. L'ICSN est rattaché à l'Université Paris-Saclay
- 200 collaborateurs avec des activités de recherche à la frontière entre la chimie et la biologie
- Structuré en quatre départments

Dr Pierre Potier

Dr Françoise Guéritte

Dr Daniel Guénard

RMN à haut champs 950 MHz

Inspirés par la Nature

Navelbine[®] et Taxotère[®]

Equipe Métabolites de Végétaux

isolement, synthèse et bioactivité

VALORISATION DES METABOLITES SECONDAIRES DANS UN BUT THERAPEUTIQUE

Synthèse

Synthèse totale Chimie médicinale Pharmacomodulations

Sandy Desrat Fanny Roussi

Phytochimie

Extraction Isolement de molécules Bio- ou Structure-guidée

Marc Litaudon Vincent Dumontet Cécile Appel Evaluations biologiques

Nombreuses collaborations nationales & internationales

Méthodes analytiques

Des récoltes au produit actif

Extractothèque

Optimisation d'une molécule isolée d'une plante tropicale induisant l'apoptose

L'apoptose et les protéines de la famille Bcl-2

L'apoptose et les protéines de la famille Bcl-2

© 2011 Quiagen Inc.

L'apoptose et les protéines de la famille Bcl-2

Le potentiel thérapeutique de l'inhibition des protéines de la famille BCL-2

Roy, M. J. *et al. Brit. J. Pharmacol.*, **2014**, *171*, 1973 Lessene, G. *et al. Nat. Rev. Drug Discov.*, **2008**, *7*, 989 Mullard, A. *Nat. Rev. Drug Discov.* **2016**, *15*, 147

Isolement de molécules actives de l'extractothèque

Grande diversité structurale

La meiogynine A

Marc Litaudon, Khalijah Awang (Université Malaya, Malaisie) et Laboratoires Servier

- dimère de sesquiterpènes
- cis-décaline, chaîne isoprènique, cyclohexyle trans
- configuration relative : 1*R**, 5*S**, 7*S**, 10*S**, 1"*R**

Pb d'approvisionement / configuration absolue ?

Litaudon, M. et al. J. Nat. Prod. 2009, 72, 480-483

La meiogynine A : retrosynthèse

Hypothèse biomimétique :

Difficultés synthétiques potentielles :

- contrôle de la stéréochimie des doubles liaisons du monomère A
- synthèse sélective de quatre monomères B chiraux
- régiochimie de la cycloaddition de **Diels-Alder** finale

Synthèse des monomères

Dalia Fomekong Fotsop, J. Org. Chem. 2010, 75, 7412

Fin de la synthèse totale de la Meiogynine A

Cycloaddition de Diels-Alder :

Configuration et activité biologique

Fomekong Fotsop, D. et al. J. Org. Chem. 2010, 75, 7412

Etudes RMN d'interaction protéines-ligand

N. Birlirakis, G. Rivière, S. Nogaret, O. Serve, E. Guittet (ICSN)

Expériences par résonnance magnétique nucléeaire (RMN ¹H-¹⁵N HSQC des cibles protéiques en présence de la meiogynine A)

- ♦ Forte interaction du ligand avec les deux cibles
 Bcl-xL et Mcl-1
- ♦ Changement conformationnel des protéines
- Stoechiométrie 1:1, fixation du ligand dans le sillon hydrophobe des cibles

Spectre HSQC ¹⁵N de la protéine Bcl-xL ¹⁵N-¹³C-marquée seule (noir), en présence de la meiogynine A avec un ratio 1:1 (rouge) ou 2:1 (bleu) (ratio protéine : meiogynine A)

G. Rivière, N. Birlirakis, E. Guittet

1^{ères} études de modélisation moléculaire dans Bcl-xL

B. lorga, C. Colas (ICSN)

Colas, C. et al. Chemistry for Life Sciences, T. Kiss, A. Perczel, Eds., Medimond, 2011, 41-46

1^{ères} études de modélisation moléculaire dans Bcl-xL

Proposition de structures potentiellement plus affines pour la protéine

Analogues de 1^{ère} génération

mais ... rendement de la Diels-Alder moyen (45%) et durée longue (15 jours à 1 mois)

Analogue de 1^{ère} génération

Anaïs Pujals, Joëlle Wiels

 Cytotoxique sur lignées de lymphomes sur-exprimant Bcl-xL et/ ou Mcl-1

Desrat, S. et al. Bioorg. Med. Chem. Let. 2014,

Analogues de 2^{eme} génération

Camille Remeur, Sandy Desrat

Fin de la synthèse des analogues de 2^{eme} génération

Desrat, S., Remeur, C., *et al. Chem. Commun.* **2014**, *50*, 8593 Desrat, S., Remeur, C *et al.*, *Org. Biomol. Chem.* **2015**, *13*, 5520

Allongement de la chaîne latérale

Desrat, S., Remeur, C., *et al. Chem. Commun.* **2014**, *50*, 8593 Desrat, S., Remeur, C *et* al. *Org. Biomol. Chem.* **2015**, *13*, 5520

Activité sur les protéines cibles

Desrat, S., Remeur et al. Chem. Commun. 2014, 50, 8593

Etudes de modélisation moléculaire

B. lorga

> 2 liaisons hydrogène Arg100 et Tyr195

Perspectives

Famille d'inhibiteurs duals de Bcl-xL et Mcl-1 mais ... non cytotoxiques

Les dérivés de la meiogynine sont également actifs sur Bcl-2 (inhibiteurs multiples)

Remplacement de la fonction ester par un groupe non hydrolysable

Conclusion et perspectives

Bcl-xL

Mcl-1

Etude du mécanisme d'action d'une famille de composés naturels cytotoxiques

Une famille originale de produits naturels

Stilbènes prénylés isolés de Macaranga spp.

Macaranga vedeliana (Nouvelle Calédonie) Védélianine

Une famille originale de produits naturels

Stilbènes prénylés isolés de Macaranga spp.

Macaranga vedeliana (Nouvelle Calédonie) Védélianine

O. Thoison et al. Phytochem. 1992, 31, 1439

Une famille originale de produits naturels

Stilbènes prénylés isolés de Macaranga spp.

Macaranga vedeliana (Nouvelle Calédonie) Védélianine

Macaranga schweinfurthii (Cameroun) Schweinfurthines A, B, C et D

Macaranga alnifolia (Madagascar) D Schweinfurthines E, F, G et H

O. Thoison et al. Phytochem. 1992, 31, 1439

J. A. Beutler et al. J. Nat. Prod. 1998, 61, 1509

B. J. Yoder *et al. J. Nat. Prod.* **2007,** *70,* 342 P. Klausmeyer *et al. J. Nat. Prod.* **2010,** *73,* 479

Des molécules d'intérêt pour le cancer

Des molécules d'intérêt pour le cancer

Algorithme COMPARE

Profil d'activité original

(OSW-1, stelletine A, cephalostatine 1)

Nouveau mécanisme d'action Nouvelle cible biologique

5 Brevets – Université d'Iowa et NCI

J. A. Beutler et al. J. Nat. Prod. 1998, 61, 1509

Etat de l'art et problématiques

- Limites pour l'obtention d'une grande quantité de produit
- Métabolites secondaires minoritaires dans les *Macaranga* spp.
- Faible rendement d'extraction (< 10⁻⁴ %, feuilles)

- Mécanisme d'action toujours inconnu ... mais plusieurs études réalisées
- --> Interaction avec les **protéines OSBPs** (impliquées dans le transport intracellulaire du cholestérol) : cible réelle ? Jamais impliquée dans le cancer

C. H. Kuder et al. Mol. Pharmacol. **2012**, 82, 9 X. Bao et al. Cancer. Biol. Ther. **2015**, 16, 589 A.W. Burgett et al. Nat. Chem. Biol. **2011**, 7, 639

Etat de l'art et problématiques

- Une synthèse totale, nombreuses étapes (16 à 22) / rendement global faible (<1%)</p>
- Relations Structure Activité

N. R. Mente *et al. J. Org. Chem.* **2008**, *73*, 7963 J. J. Topczewski *et al. J. Org. Chem.* **2009**, *74*, 6965 J. J. Topczewski *et al. Tetrahedron Lett.* **2011**, *52*, 1628

Etat de l'art et problématiques

- Une synthèse totale, nombreuses étapes (16 à 22) / rendement global faible (<1%)</p>
- Relations Structure Activité
- > Analogues biotinylés et fluorescents synthétisés -> recherche de la cible

C. H. Kuder et al. Mol. Pharmacol. 2012, 82, 9

Objectifs du projet

Rechercher de nouveaux analogues parmi 21 Macaranga spp.
 Isoler une grande quantité de SWFs à partir de Macaranga tanarius et synthèse de nouveaux analogues actifs portant un alcyne
 Étude de l'activité biologique et découverte du mécanisme d'action
 Stratégie de chimie click in cellulo Coll. J. Bignon (ICSN) et R. Rodriguez (Institut Curie)

Exploration de la biodiversité des Macaranga spp.

Les «réseaux moléculaires », de puissants outils de déréplication

Collaboration avec Jean-Luc Wolfender, Université de Genève

Réseaux moléculaires

Composés présents dans les fruits et les fleurs de deux Macaranga

Extractothèque

21 Macaranga spp.

- ≠pays
- ≠ parties de plantes

Analyses LC-MS²

plateforme GnPS Logiciel Cytoscape

P-M. Allard, T. Péresse et al. Anal. Chem. 2016, 88, 3317

Exploration de la biodiversité des Macaranga spp.

SWFs dans feuilles et fruits de *Macaranga* spp.

(Photo : Macaranga vedeliana et tanarius)

Exploration de la biodiversité des Macaranga spp.

SWFs dans feuilles et fruits de Macaranga spp.

(Photo : Macaranga vedeliana et tanarius)

Imagerie par spectrométrie de masse

Collaboration avec Nicolas Elie et Alain Brunelle (ICSN)

 \rightarrow SWFs détectés spécifiquement au niveau des glandes

Isolement d'une grande quantité de SWFs

50 kg de fruits *Macaranga tanarius*

Synthèse de dérivés alcyne à partir de la SWF G

Développement d'une méthode de synthèse pour introduire régio-sélectivement un alcyne -> 3 dérivés alcynes ont été synthétisés sur la base des données de RSA

Chimie click in cellulo

Chimie click in cellulo

Conclusion et perspectives

Remerciements

Directrice : Dr Angela Marinetti

Equipe métabolites de plantes Modélisation

- Marc Litaudon
- Vincent Dumontet
- Cécile Apel
- Sandy Desrat
- Florent Olivon
- Simon Remy
- Shelly Gapil
- Alma Abou Samra
- Tiphaine Peresse
- Gwenaëlle Jezequel

- Dr Bogdan Iorga
- RMN
- Dr Eric Guittet

Spectrométrie de masse

Alain Brunelle

Platforme CIBI

Jérôme Bignon

- Bruno Antonny
- institut Valrose
 B i o l o g i e
- Thierry Virolle

• Jean-Luc Wolfender

Raphaël Rodriguez

Financements

Equipe Métabolites de Végétaux

isolement, synthèse et bioactivité

Merci pour votre attention