Une approche moléculaire pour comprendre et améliorer la résistance au choc des matériaux polymères

Jean Louis HALARY

Laboratoire de Physico-chimie des Polymères et Milieux Dispersés (UMR 7615) Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris 10, Rue Vauquelin, F-75231 Paris Cedex 05

jean-louis.halary@espci.fr

Centre d'Alembert, ORSAY (11 mai 2006)

Introduction

- La résistance au choc est une propriété critique pour les applications de nombreux polymères amorphes vitreux
- Une préoccupation de longue date a été :

 de prédire la relation existant entre cette propriété et la structure chimique des chaînes polymères
 de trouver des moyens pour remédier à leur fragilité éventuelle

Une approche *moléculaire* des phénomènes, basée en particulier sur la considération de *familles de polymères modèles*, a offert de nouveaux éléments de compréhension *L. Monnerie et al in: " Intrinsic Molecular Mobility and Toughness of Polymers ", Advances in Polymer Science, vol. 187, H.H. Kausch éditeur, Springer (2005),* pp. 31 - 315.

Grandes lignes de la présentation

- 1. Caractérisation de la résistance à la rupture par des mesures de K_{lc} et G_{lc}
- 2. La dynamique des chaînes macromoléculaires
- 3. Relation entre K_{lc}, enchevêtrements et mobilité moléculaire dans l'état vitreux
- 4. Sensibilité de K_{lc} à la masse molaire des polymères
- 5. Nouveaux remèdes à la fragilité des réseaux thermodurcissables
 - exemple de réseaux époxy modèles
 - exemple de réseaux hybrides méthacrylate de méthyle nanosilice

6. Conclusions

L'évaluation de la résistance au choc se fait souvent par des essais en flexion 3 points sur éprouvette entaillée

Centre d'Alembert, ORSAY (11/05/06)

um

Mécanisme de propagation de fissure dans un polymère amorphe fragile

Mécanisme de propagation de fissure dans un polymère semi-cristallin

Détermination de K_{Ic}

▶ Détermination de G_{lc}

$$\begin{aligned} & \int_{C} = \frac{U_{i}}{BW\Phi} \end{aligned}$$
B: épaisseur de l'éprouvette = 6 (or 10) mm, W: hauteur de l'éprouvette
U_i : aire sous la courbe entre 0 et P_{max}
Φ: facteur géométrique $\Phi = \frac{\Theta + 18.64}{\frac{d\Theta}{d(\frac{a}{W})}}$
Θ calculé par l'expression :
 $\Theta = \frac{16(\frac{a}{W})^{2}}{(1-(\frac{a}{W}))^{2}} \begin{bmatrix} 8.9 - 33.717\frac{a}{W} + 79.616(\frac{a}{W})^{2} - 112.952(\frac{a}{W})^{3} + 84.815(\frac{a}{W})^{4} - 25.672(\frac{a}{W})^{5} \end{bmatrix}$
Incertitude sur la mesure de G_{Ic} : ± 0.1 kJ.m⁻²
G_{Ic} = K_{Ic}² (1 - v²) / E dans des conditions de
"déformation plane" (éprouvette épaisse)

Quelques rappels sur la dynamique des chaînes polymères

Mobilité moléculaire :

2.

- thermoactivée
- et (ou) induite par une contrainte mécanique

Relaxations secondaires à basse température (T γ , T β)

Transition vitreuse (Tg) [relaxation principale α]

Dynamique d'écoulement de la chaîne entière (rôle des enchevêtrements éventuels)

Température croissante

9

Relaxations secondaires à basse température

Principaux moyens d'identification et de caractérisation : Analyse dynamique mécanique Analyse diélectrique (si groupe polaire) RMN haute résolution dans l'état solide

Transition chaise-chaise du groupe cyclohexyle = relaxation γ

Transition chaise-chaise du groupe cyclohexyle = relaxation γ

Description thermodynamique des mouvements β coopératifs (Starkweather)

 $\Delta G_a = \Delta H_a - T \Delta S_a$

fréquence v du mouvement :

 $v = (kT/2\pi h) \exp(-\Delta G_a/RT) = (kT/2\pi h) \exp(-\Delta H_a/RT) \exp(\Delta S_a/R)$

Ea = RT [1 + ln(k/ $2\pi h$) + ln(T/v)] + T ΔS_a

Pour une fréquence de relaxation de 1 Hz et une température T* du massif de relaxation

 $\Delta H_a = Ea - RT^*$ $T^* \Delta S_a = Ea - RT^* [1 + \ln(kT^*/2\pi h)]$

Mouvements coopératifs si ∆Sa ~ 100 J.K⁻¹.mol⁻¹

Transition vitreuse

diagrammes d'état d'un polymère amorphe

Principaux moyens d'identification et de caractérisation : Essais mécaniques Analyse enthalpique différentielle Analyse diélectrique (si motif de répétition polaire) Méthodes de modélisation moléculaire

Courbe maîtresse

 $E(T,f) = E(To, fo.a_{T/To})$

Idem pour E" avec les mêmes facteurs de glissement log a(T/To)

Loi WLF

Théories de la Tg

Approche « thermodynamique »

État vitreux = État conformationnel hors équilibre

Mise en évidence d'une température T_{inf}

Centre d'Alembert, ORSAY (11/05/06)

21

Méthodes de simulation des mouvements moléculaires

Influence du temps de simulation ($t_3 > t_2 > t_1$)

Mise en évidence des enchevêtrements

Principaux moyens d'identification et de compréhension : Analyse dynamique mécanique (plateau caoutchoutique) Rhéologie (dans la zone d'écoulement) Modèles théoriques

Images d'enchevêtrements

Masse entre enchevêtrements : $M_e = \langle n_e \rangle M_o$ Densité d'enchevêtrements : $v_e = \rho N_A / M_e$

Ecoulement à l'état liquide

= caractérisation de la viscosité

Ecoulement à l'état liquide (2)

Centre d'Alembert, ORSAY (11/05/06) = 2ème signature des enchevêtrements 26

Modèles théoriques

Pour la chaîne non enchevêtrée Modèle de ROUSE

 $\tau_p \sim M^2$, $\eta \sim M$

Pour la chaîne enchevêtrée Modèle de reptation (de Gennes, Doï, Edwards)

Hiérarchisation des mouvements moléculaires

Transitions	Quelques
secondaires	liaisons
Transition	Une quinzaine
vitreuse	de liaisons
Réseaux	Plusieurs centaines
d'enchevêtrement	de liaisons

Température croissante

Temps d'observation croissant

4. Sensibilité de K_{lc} à la masse molaire des polymères

► Sensibilité de K_{lc} à la masse molaire des polymères pour M_w ≫ 8 M_e

Exemple des polyamides semi-aromatiques à différentes températures

Basse température : PAS D'EFFET (craquelures par scission de chaînes)

Haute température : SENSIBILITE A LA MASSE (craquelures par désenchevêtrement; stabilisation des fibrilles à forte masse)

► Sensibilité de K_{lc} à la masse molaire des polymères pour M_w ≫ 6 M_e

Même résultat pour le polycarbonate de bis-phénol-A ...

.. et pour de nombreux autres polymères amorphes

Basse température : PAS D'EFFET (craquelures par scission de chaînes)

Haute température : SENSIBILITE A LA MASSE (craquelures par désenchevêtrement; stabilisation des fibrilles à forte masse)

Cas des réseaux époxy-amine-antiplastifiant présentant une nano-séparation de phases

Antiplastifiants donnant une séparation de phases avec les résines DGEBA-DDM :

6. Conclusions

Une approche moléculaire des propriétés de rupture de familles de polymères « modèles » :

 Conduit à remettre en cause certaines idées reçues
 Permet de proposer des solutions originales pour le renforcement des matériaux

Remerciements :

Benoît Brûlé, Stéphane Cros, Nicolas Droger, Muriel Mauger, Valérie Sauvant, Laurent Tézé Alain Burr, Lucien Monnerie, H. Henning Kausch

Merci de votre attention !