
Mathematical Modeling of Bacterial 
Regulatory Networks 

Hidde de Jong 

INRIA Grenoble - Rhône-Alpes 
Hidde.de-Jong@inria.fr        http://ibis.inrialpes.fr 



2 

Overview 

1.  Gene regulatory networks in bacteria 

2.  Mathematical modeling of gene regulatory networks 
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Bacterial growth and adaptation 
 Bacteria are geared towards growth and division 

E. coli cells have doubling times up to 20 min  

Stewart et al. (2005), PLoS Biol., 3(2): e45 

 External perturbations may cause adaptation of growth rate, 
and more generally, may change physiology of bacterial cell 
Nutrient starvation, heat shock, osmotic stress, high population density, … 



Gene regulatory networks 
 The adaptation of bacteria to changes 

in their environment involves 
adjustment of gene expression levels 
 Differences in expression of enzymes in 

central metabolism of E. coli during growth 
on glucose or acetate 

 Gene regulatory networks control 
changes in expression levels in 
response to environmental 
perturbations 
  

Oh et al. (2002), J. Biol. Chem., 277(15):13175–83 



Gene regulatory networks 
 Gene regulatory networks consist of genes, gene products 

(RNAs, proteins), and the regulatory effect of the latter on the 
expression of other genes 
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Bolouri (2008), Computational Modeling of 
Gene Regulatory Networks, Imperial College 
Press 

Brazhnik et al. (2002), Trends Biotechnol., 20(11):467-72 

 Gene regulatory networks 
cannot be reduced to direct 
interactions (transcription 
regulation), but also include 
indirect interactions (mediated 
by metabolism) 



 Indirect interactions can be derived from underlying system of 
biochemical reactions 
 Time-scale hierarchies between metabolism and gene expression 

allows model reduction using quasi-steady-state approximation 

Gene regulatory networks 

Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812 
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Modeling of gene regulatory networks 
 Most gene regulatory networks of biological interest are large 

and complex 
E. coli has 4200 genes coding for several,hundreds of transcription factors 

 No global view of functioning of network available, despite 
abundant knowledge on network components 
 Understanding of dynamics requires mathematical modeling and 

computer analysis and simulation 

 Discipline now often referred to as systems biology 

 Well-established framework for modeling of gene regulatory 
networks using ordinary differential equation (ODE) models 
 Ultimately (often implicitly) based on kinetic theory of biochemical reactions  

Polynikis et al. (2009), J. Theor. Biol., 261(4):511-30 
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 Cross-inhibition network consists of two genes, each coding 
for transcription regulator inhibiting expression of other gene 

 Cross-inhibition network is example of positive feedback, 
important for phenotypic differentiation (multistability)  

Cross-inhibition network 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

gene 
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promoter gene promoter 

protein 
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ODE model of cross-inhibition network 

xa = concentration protein A  

xb = concentration protein B  

xa = κa f (xb) - γa xa 

xb = κb f (xa) - γb xb 

κa, κb > 0, production rate constants  

γa, γb > 0, degradation rate constants  

. 

. 

f (x) =               ,  θ  > 0 threshold θ n 

θ n + x 
n 

x 

f (x ) 

θ 0 

1 
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ODE model of cross-inhibition network 

 Implicit modeling assumptions: 
  Ignore intermediate gene products (mRNA) 

  Ignore gene expression machinery (RNA polymerase, ribosome) 

  Simplification of complex interactions of regulators with DNA to single 
response function 

xa = concentration protein A  

xb = concentration protein B  

xa = κa f (xb) - γa xa 

xb = κb f (xa) - γb xb 

κa, κb > 0, production rate constants  

γa, γb > 0, degradation rate constants  

. 

. 
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Bistability of cross-inhibition network 
 Analysis of steady states in phase plane   

 System is bistable: two stable and one unstable steady state. 
 For almost all initial conditions, system will converge to one of 

two stable steady states (differentiation) 
 System returns to steady state after small perturbation 

xb 

xa 

0 

xb = 0  
. 

xa = 0  
. 

xa = 0 :  xa =           f (xb) 
κa 
γa 

xb = 0 :  xb =           f (xa) 
κb 
γb 

. 

. 



Hysteresis in cross-inhibition network 
 Transient perturbation may cause irreversible switch from one 

steady state to another (hysteresis) 
Modulation of regulatory effect of one of inhibitors (α) 

 Change in parameter causes saddle-note bifurcation 
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Construction of cross inhibition network 
 Construction of cross inhibition network in vivo 

 Differential equation model of network 

u =                      – u 
1 + v β 
α1 v =                      – v 

1 + u γ 
α2 . . 

Gardner et al. (2000), Nature, 403(6786): 339-342 
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Experimental test of model 
 Experimental test of mathematical model (bistability and 

hysteresis) Gardner et al. (2000), Nature, 403(6786): 339-342 
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Bacteriophage λ infection of E. coli 
 Response of E. coli to phage λ 

infection involves decision between 
alternative developmental pathways:   
lysis and lysogeny 

Ptashne, A Genetic Switch, Cell Press,1992 
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Bistability in phage λ 
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Control of phage λ fate decision 
 Cross-inhibition motif plays key role in establishment of lysis or 

lysogeny, as well as in induction of lysis after DNA damage 

Santillán and Mackey (2004), Biophys. J., 86(1): 75-84 
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Simple model of phage λ fate decision  
 Differential equation model of cross-inhibition feedback network 

involved in phage λ fate decision 
mRNA and protein, delays, thermodynamic description of gene regulation 

Santillán and Mackey (2004), Biophys. J., 86(1): 75-84 
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Analysis of phage λ model 
 Bistability (lysis and lysogeny) only occurs for certain parameter 

values 
 Switch from lysogeny to lysis involves bifurcation between two 

monostable regimes, due to change in degradation constant 

Santillán and Mackey (2004), Biophys. J., 86(1): 75-84 
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Extended model of phage λ infection 
 ODE model of the extended network underlying decision 

between lysis and lysogeny 
Role of other regulatory proteins (CII, N, Q, …) 

McAdams and Shapiro (1995), 
Science, 269(5524): 650-656 

 Recent experimental 
work downplays 
importance of mutual 
inhibition of CI and Cro 
in lysis-lysogeny 
decision 

Oppenheim et al. (2005), Annu. Rev. 
Genet., 39:409–29 
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Simulation of phage λ infection 
 Numerical simulation of promoter activity and protein 

concentrations in (a) lysogenic and (b) lytic pathways 

 Cell follows one of two pathways after infection 



Real-time monitoring of phage λ infection  
 New measurement techniques allow real-time and in-vivo 

monitoring of the execution of lytic and lysogenic pathways  
 Use of fluorescent reporter genes in combination with automated plate 

readers 
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Q 

CII 

Kobiler et al. (2005), Proc. Natl. 
Acad. Sci. USA, 102(12): 4470-5 
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Other examples of bistability 
 Many other examples of bistability exist in bacteria 

  Lactose utilization in E. coli 

  Persister cells and antibiotic resistance in E. coli 

  Genetic competence in B. subtilis 

  … 

 Can we find general design principles, relating network 
structure to bistability and other properties of network 
dynamics? 

Dubnau and Losick (2006), Mol. Microbiol., 61 (3):564–72 

Alon (2007), An Introduction to Systems Biology, Chapmann&Hall/CRC 
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Necessary condition for bistability 
 Necessary condition for bistability, or multistability, is the 

occurrence of positive feedback loops in the regulatory 
network 

 Increasingly general mathematical proofs of necessary 
condition for bistability, or multistability, in regulatory networks 
 Regulatory interactions (activation/inhibition) lead to non-zero signs 

(+/-) in Jacobian matrix 

 Condition is not sufficient, as the actual occurrence of 
bistability depends on parameter values 

Thomas and d’Ari (1990), Biological Feedback, CRC Press 

+ 

+ 

+ 

! 

! 

Soulé(2003), ComPlexUs, 1:123-133 



Stochasticity in gene expression 
 ODE models make abstraction of underlying biochemical 

reaction processes involved in gene expression that may not be 
warranted 

 Gene expression is stochastic instead of deterministic 
process 

 Stochasticity gives rise to fluctuations in gene products (noise) 

 Discrete number of molecules of reaction species, instead of 
continuous concentrations 

Noise amplified by low number of molecules of each species 
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Kaern et al. (2005), Nat. Rev. Genet.,  6(6):451-464 



 Major question is how cells both tolerate and exploit noise. 

 Most cellular processes are robust to noise, despite 
stochasticity of underlying system of biochemical reactions 

Stochasticity in gene expression 
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 Sometimes, intracellular noise 
drives population heterogeneity 
that may be beneficial for a species 
After infection, only fraction of cells lyse 

 ODE models are not suitable for 
studying origin and effects of noise  

Rao et al. (2002), Nature,  420(6912):231-237 
Raj and van Oudenaarden (2008), Cell, 135(2):216-26 



Stochastic models of gene expression 
 Stochastic master equation describes dynamics of 

biochemical reaction system 

  Number of molecules of each species i at time-point t described by 
discrete variable Xi(t) ∈ N  

  p[Xi(t)=Vi] describes probability that at time t there are Vi molecules of 
species i 

  m is the number of different reactions 

  αj and βj are constants defined in terms of reaction constants and 
number of reactant molecules 

28 

dp[X(t)=V] / dt = ∑ p[X(t)=V-ν j] βj  - p[X(t)=V] αj  
j = 1 

m 

       Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier 



Stochastic simulation 
 Analytical solution of master equations is not possible in most 

situations of practical interest 

 Stochastic simulation predicts sequences of reactions that 
change state of system, starting from initial state X(0) = V0  
 Two different runs from identicial initial state may lead to different final 

states 

 Repeating stochastic simulation many times yields 
approximation of probability distribution p(X (t )=V), and thus 
solution of stochastic master equation 
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       Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55 

Gillespie (2002), J. Phys. Chem.,  81(25): 2340-61 
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Stochastic modeling of phage λ infection 
 Stochastic model of 
λ lysis-lysogeny 
decision network 

Arkin et al. (1998), Genetics, 149(4): 1633-48 
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Stochastic modeling of phage λ infection 
 Time evolution of Cro and CI 

dimer concentrations 
 Due to stochastic fluctuations, 

from identical initial conditions 
cells follow one or other pathway 

 Averaging over many simulations 
gives probability of lytic and 
lysogenic phenotype, 
corresponding to observed ratio  

Arkin et al. (1998), Genetics, 149(4): 1633-48 
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Measurements of phage λ infection 
 New measurement techniques allow real-time and in-vivo 

monitoring of the execution of lytic and lysogenic pathways in 
individual cells  
 Use of reporter genes in combination with fluorescence microscopy 

Amir et al. (2007), Mol. Syst. Biol., 3:71 



Stochasticity and hidden variables 
 Is observed population heterogeneity entirely due to stochastic 

dynamics of biochemical reactions? 
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Zeng et al. (2010), Cell, 141(4):682-91 

 Hidden variables that 
deterministically set outcome of 
what seems noisy decision process 
 Deterministic voting of stochastic 

decision in single phages 



Conclusions 
 Gene regulatory networks control changes in gene expression 

levels in response to environmental perturbations 
 Dynamic properties of bacterial regulatory networks can be 

studied by means of mathematical models 
 Deterministic and stochastic models capture different aspects of network 

functioning 

 Dynamic properties can be related to structure of regulatory 
interactions in network 
 Positive feedback and multistability, negative feedback and oscillations 

 Networks both tolerate and exploit noise due to stochasticity of 
underlying biochemical reaction systems 
 Relation between feedback structure and noise amplification/attenuation? 
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Some challenges for modelers 
 Upscaling of analysis to large networks of dozens or even 

hundreds of genes, proteins, metabolites, … 
 Model reduction, qualitative models, and formal verification tools 

 System identification and parameter estimation 
 New measurement techniques yield higher-quality data, but still noisy, 

sparse, heterogeneous 

 Large models on different time-scales, with many unobserved variables 

 Systematic design of experimental perturbations for 
identification and control 
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